
54 The Delphi Magazine Issue 69

Manage The Damage
This month we chop and
squeeze several files into one

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Part of Chapter 7 in my new
book, Tomes of Delphi, Algo-

rithms and Data Structures (avail-
able in May), is an extensive
discussion of extendible hash
tables, something I briefly touched
on in my article on hash tables in
The Delphi Magazine in March
1998. The extendible hash table I
introduce in the book uses three
files: a directory, a file of hash
buckets, and a file of data records.
Whilst I was writing the code, I kept
on wishing that I had a way of
making them all merge into one file:
three files seemed excessive
somehow.

However, it wasn’t as simple as it
sounds. The file of data records
was exactly that: an array of
records contiguous on disk. The
file of hash buckets could be
viewed as a file of records, with
each hash bucket being fixed in
size, but of course they were a dif-
ferent size to the data records.
Finally, the directory (a directory
of hash buckets) was a stream of
long integers, varying in number.
Each of my three files had compo-
nents that were completely differ-
ent to each other. Even worse,
each component had varying life-
cycles: records could be added
and deleted, hash buckets would
split (and possibly merge) and the
directory was the most volatile
of all.

Given my final deadline for the
book (the code for the extendible
hash table only came together on
the final day!), there was no way I
could solve the riddle, so I just left
it alone.

Too Much Of A Good Thing
Since then, I’ve been mulling it over
some more. The more I thought
about it the more it became clear
that what I wanted was something
like OLE structured storage, as
Microsoft terms it. Structured
storage is essentially a file system
within a single file, sporting a COM

interface. By file system, I mean
that with structured storage you
can create folders and put files
within those folders. The whole lot,
folders and files, is stored within a
single file on disk. It’s as if the file
were a disk. (Although Microsoft
calls the data structure structured
storage, it is also sometimes known
as a compound file, and that’s how
we’ll be referring to it later on.)

Microsoft uses OLE structured
storage for storing the various
parts of a Word document, and of
an Excel spreadsheet. Without it
they’d have to have several differ-
ent files describing a complex doc-
ument (each of which could
become lost); with it a document is
just a single file, albeit with a com-
plex internal structure. In my view
structured storage is made a more
complicated subject than it really
is; Microsoft decided to call the
folders storages, and the files
streams. I can just about live with
the word stream, but calling a
folder a storage is just plain
obscure (even Word’s grammar
checker objects to the word pair ‘a
storage’).

The COM object API for
structured storage has all the usual
suspects: creating or opening a
new structured storage file, creat-
ing or opening a stream, reading
from or writing to a stream, creat-
ing or opening a storage (or
folder). You can also iterate
through the streams in a storage
much as you would do a directory
listing for a folder on your disk. The
structure storage file comes with a
root directory already created.

Something To Live For
This article, however, is not going
to be about structured storage. If
you want to know about it, Eric
Harmon’s book Delphi COM Pro-
gramming describes it all, although
a little disappointingly he doesn’t
provide a class encapsulation of it.
Instead, as befitting a column on

algorithms, we’ll discuss how to
build our own. We’ll be designing
and implementing, fanfare please,
the Algorithms Alfresco compound
file. Well, at least, the first simple
iteration of it.

The first thing we have to
decide, before delving into the
low-level implementation, is what
we want to be able to do with a
compound file. My initial list was:
create an empty compound file;
open one; add or remove folders
within the compound file (there
would have to be a pre-defined
root directory, obviously); create,
open, read from and write to, close
and delete subfiles (I’ll be referring
to the internal files within the com-
pound file as subfiles). We should
also be able to list the subfiles and
folders for a given folder (akin to
FindFirst/FindNext/FindClose).

Finally, there should also be a
way of defining a current directory,
although, in my view, that’s
possibly a little too restrictive.
Better would be a way of opening a
folder, returning a handle, and
then using that handle to access
the subfiles within the folder. That
way, you could have as many ‘cur-
rent directories’ as you wanted.

Although it would be nice to
open and manipulates subfiles in
the time-honored manner of call-
ing separate routines, one to open
a subfile, one to read a block from a
subfile, etc, a simpler way would
be to encapsulate them as
streams, that is, class descendants
of TStream. A stream would encap-
sulate accessing a subfile quite
nicely. The compound file should
of course be implemented as a
class.

May 2001 The Delphi Magazine 55

Notice that, so far, I’m ignoring
the entire problem of how to imple-
ment at a low level such a beast as a
compound file. We’ll get to that in a
moment. For now, let’s concen-
trate on how we would want to use
a compound file if we had one.
Although it would be pretty amaz-
ing if we could implement an
entire, efficient, error-resistant,
shareable file system inside a
single file within a single article, in
reality we should take it slowly in
simple steps. Later on, once we’ve
written a basic compound file, we
can go back and add extra function-
ality, consider writing a Norton
Utilities for it, allow it to be shared
across several processes, or what-
ever. So, we won’t worry too much
about the advanced features, and
instead just consider writing a
basic compound file.

I envisage the primary use of a
compound file would be for pro-
grams that have a multiplicity of
small configuration or other types
of files. Such a program is Delphi
itself: there’s a bundle of files that
Delphi maintains for its own use: a
DSK file, a DMT file, a DRO file, etc.
Another example is Netscape: for
each user it maintains a dozen files.
Of course, if we wanted to write a
complex document type format,
we could radically simplify it by
storing disparate structures in dif-
ferent streams in different subfiles
in a compound file: my original
requirement, in fact.

Right, so now we have the basic
functionality nailed down. Time to
worry about how to design and
code it.

Smalltown Boy
When I started to think about this
problem in earnest, my immediate
thought was that since we are to
mimic a file system, let’s copy
some ideas from a real one. The
one I chose was the only one I knew
about (from way back when): the
FAT system as used in DOS. It’s
small and simple enough to grasp
in a few paragraphs.

How does this work? Well the
first thing to realize is that in the
DOS FAT system the disk is divided
up into equal sized chunks called
clusters. A cluster is the smallest

unit of disk space we can use; they
are numbered from 0 up to what-
ever number the last cluster on the
disk will have. So, the first thing we
should do is to set up our com-
pound file as a file of equal sized
blocks. The size doesn’t really
matter, but, since we’ll assume
that the subfiles we’ll be storing
will be smaller rather than larger,
we’ll choose a smallish block size
of 512 bytes ($200 bytes in hex).
This is beneficial from another
viewpoint: the average amount of
space lost per subfile will only be
256 bytes, whereas if we used 4Kb
blocks instead, say, the average
wasted space per subfile would be
2Kb. We don’t particularly want to
go smaller, since reading or writing
all the blocks for a subfile will be
much slower. So, 512 byte blocks
it is.

Another thing to realize is that
when we format a disk we know
exactly how big the disk is and
therefore we know the total count
of clusters on the disk. For a com-
pound file this is a little awkward:
we don’t want to pre-allocate a
massive amount of disk space for
the compound file. What we’d
really like is for it to grow when
necessary and as needed. Mark
that up as a possible problem.

Back to the DOS FAT system. The
first cluster, cluster 0, contains var-
ious important pieces of informa-
tion about the structure of the disk.
We should do the same: the first
block of the compound file should
contain data about the compound
file as a whole, for example a signa-
ture so that we can verify that a file
is really a compound file, the block
size, and so on.

The next few clusters of the DOS
FAT system are for the FAT (gener-
ally there are two FATs; however,
we’ll ignore this duplication for our
compound file). The FAT is the file
allocation table. It’s an array of
cluster numbers, indexed by clus-
ter number. For a disk, the FAT is
fixed in size since we know the size
of the disk and hence how many
clusters it contains. To explain
how to use the FAT it’s best to use
some examples.

Suppose we have a file that is
spread over several clusters on a

DOS FAT disk and, through a
mechanism we haven’t discussed
yet, suppose we know the starting
cluster number for the file. How do
we find all the clusters in the file?
We go to the FAT. The entry in the
FAT for the starting cluster
number is the number of the
second cluster for the file. The
entry in the FAT for the second
cluster number is the number of
the third cluster for the file, and so
on. Eventually the FAT entry will
read -2 (an impossible cluster
number) and that signifies that the
current cluster is the final one.

Suppose we want to create a file
and write data to this file. We shall
have to write the data to one or
more unused clusters. How do we
know which clusters are unused?
For the FAT, another special value
comes into play, -1. When we
format the disk, the format pro-
gram fills the FAT with -1 values to
signify that all clusters are unused.
When we write data to a file and
need an unused cluster, we look
through the FAT until we reach a -1
value: the index of it is the number
of the cluster we can write to.

So, in our case, we’re left with a
couple of problems. We don’t par-
ticularly want to create a com-
pound file to be a fixed size
(imagine if all Word documents
were 1Mb in size, for example). So
we’d like it to grow automatically
as we stuff more and more subfiles
into it. That’s easy enough for a file
to do, but what about our FAT
look-a-like? We can’t have a fixed
size for this either: the FAT must
grow as needed. We can, however,
reserve block 1 (the second block)
to be the first block of the FAT
(block 0 is the header, remember).
Subsequent blocks in the FAT will
be found by using the FAT we’ve
read so far. (If this gives you a
headache, you have my permis-
sion to get an aspirin!) The entries
in the FAT could be longints, but
for the intended purpose of the
FAT (storage of several small files)
I think we can get away with
word-sized entries. That would
limit the compound file to a maxi-
mum of 32Mb if we used 512 byte
blocks: a reasonable limitation in
my view.

56 The Delphi Magazine Issue 69

Moving right along now: after the
file allocation table, the DOS FAT
system stores the first cluster of
the root directory. This is the start
of the actual file system, where the
file and folder names are stored,
where we find out which cluster a
file’s data starts at, and so on. The
root directory (as is any directory
or folder) consists of an array of
directory entries, records that

define a single file or folder. Each
directory entry contains the name
of the entity (be it file or folder), its
type (is it a file, or a folder, or is it
unused?), its size (the size of a file
is obvious, the size of a folder is the
sum of the size of its directory
entries), its timestamp, its attrib-
utes (read-only, hidden, system?)
and the number of its starting
cluster.

And for our compound file?
Pretty much the same, to be
honest. We can be a little clever,

though, and not limit the size of file
or folder names by making the
folder information streamed and
not a simple array.

Don’t Know What To Do
Now we’ve decided on the format
we can start writing the compound
file class. We’ll take it step by step.
First thing to notice is that, since
everything depends on being able
to read the FAT and follow block
chains in there, we should read the
entire FAT into memory when we

constructor TaaCompoundFile.Create(const aFileName : string;
aMode : word);

begin
{create the ancestor}
inherited Create;
{open the file stream}
FStream := TFileStream.Create(aFileName, aMode);
{create the in-memory FAT}
FFAT := TaaIntList.Create;
FFATBlocks := TaaIntList.Create;
{allocate the header}
GetMem(FHeader, CFBlockSize);
{allocate the list of open folders}
FOpenFolders := TList.Create;
{if the stream is new (size is zero)
write the header record}

if (FStream.Size = 0) then
cfPrepare

{otherwise read the header and make sure that it's one of
our files}

else
cfReadHeader;

end;
destructor TaaCompoundFile.Destroy;
var
i : integer;
Folder : TCFFolder;

begin
{destroy the open folders}
if (FOpenFolders <> nil) then begin
for i := pred(FOpenFolders.Count) downto 0 do begin
Folder := TCFFolder(FOpenFolders.List^[i]);
CloseFolder(Folder);

end;
FOpenFolders.Free;

end;
{destroy the root if it was opened}
cfSaveRootFolder;
TCFFolder(FRoot).Free;
{destroy the FAT}
cfWriteFAT;
FFATBlocks.Free;
FFAT.Free;
{free the header block}
if (FHeader <> nil) then begin
cfWriteBlock(0, FHeader^);
FreeMem(FHeader, CFBlockSize);

end;
{close the stream}
FStream.Free;
{destroy the ancestor}
inherited Destroy;

end;
function TaaCompoundFile.cfAddBlock(var aBlock) : integer;
begin
Result := FCFSize div CFBlockSize;
cfWriteBlock(Result, aBlock);

end;
procedure TaaCompoundFile.cfPrepare;
var
Header : PCFHeader;
FATNode : TFATNode;
RootDir : TCFBlock;

begin
{initialize the header (this will block 0)}
Header := FHeader;
FillChar(Header^, CFBlockSize, 0);
Header^.cfhSignature := CFSignature;
Header^.cfhBlockSize := 512;
Header^.cfhFATSize := 1;
{write out the header}
cfAddBlock(Header^);
{initialize the first FAT node
(most entries are "unused")}

FillChar(FATNode, sizeof(FATNode), $FF);
FATNode[0] := EndOfChain;

FATNode[1] := EndOfChain;
FATNode[2] := EndOfChain;
{write out the first FAT node; set up the in-memory FAT}
cfAddBlock(FATNode);
cfReadFAT;
{initialize the root directory}
FillChar(RootDir, sizeof(RootDir), 0);
{write out the root directory}
cfAddBlock(RootDir);

end;
procedure TaaCompoundFile.cfReadFAT;
var
i : integer;
Header : PCFHeader;
FATNode : TFATNode;
FATInx : integer;

begin
{prepare the in-memory FAT}
Header := FHeader;
FFAT.Clear;
FFAT.Capacity := Header^.cfhFATSize * CFFATNodeEntryCount;
FFAT.IsSorted := false;
FFATBlocks.Clear;
FFAT.Capacity := Header^.cfhFATSize;
FFAT.IsSorted := false;
{the FAT starts at block 1}
FATInx := 1;
{read the FAT blocks}
while (FATInx <> EndOfChain) do begin
FFATBlocks.Add(FATInx);
cfReadBlock(FATInx, FATNode);
for i := 0 to pred(CFFATNodeEntryCount) do
FFAT.Add(FATNode[i]);

FATInx := FFAT[FATInx];
Assert(FATInx <> UnusedBlock,
'TaaCompoundFile.cfReadFAT: unused block ‘+
‘in FAT chain');

end;
end;
procedure TaaCompoundFile.cfReadHeader;
var
Header : PCFHeader;

begin
{first test: check the stream size}
FCFSize := FStream.Size;
if (FCFSize < 3 * CFBlockSize) or
(((FCFSize div CFBlockSize) * CFBlockSize) <> FCFSize)
then
raise Exception.Create(
'Stream is not a compound file: wrong size');

{second test: check the first block is a compound file
header}

Header := FHeader;
cfReadBlock(0, Header^);
if (Header^.cfhSignature <> CFSignature) or

(Header^.cfhBlockSize <> 512) or
(Header^.cfhFATSize <= 0) then
raise Exception.Create(
'Stream is not a compound file: header invalid');

{now read the FAT}
cfReadFAT;

end;
procedure TaaCompoundFile.cfWriteBlock(aInx : integer; var
aBlock);

var
Offset : integer;

begin
Offset := aInx * CFBlockSize;
Assert((0 <= Offset) and (Offset <= FCFSize),
'TaaCompoundFile.cfWriteBlock: Offset to write ‘+
’is out of range');

FStream.Seek(Offset, soFromBeginning);
FStream.WriteBuffer(aBlock, CFBlockSize);
if (Offset = FCFSize) then
FCFSize := Offset + CFBlockSize;

end;

➤ Listing 1: Create and Destroy
for the compound file class.

May 2001 The Delphi Magazine 57

open or create a compound file,
and, if it were altered, write it out
again when we free the compound
file. Having the FAT in memory all
the time makes the entire process
more efficient. Our best bet here is
to use the integer list class we used
last month.

We can now move on to write the
constructor and destructor. We’ll
probably need to revise these as
we go along, but at least we can test
the basic creation, opening and
closing of a compound file, even if
we do nothing else.

(This is a tenet of Extreme Pro-
gramming, by the way: write tests
as you go along, and run them at
every stage. That way, you’ll know
immediately if something gets
broken as you write extra code and
you can fix it immediately whilst
the code is fresh in your mind. The
tests themselves may have to be
altered to suit the new circum-
stances, but they shouldn’t be
deleted. The premise behind this is
that, when you write some code, it
is the best time to write the tests
that test the code. You will also
have a better idea of any boundary
conditions. Can this pointer be nil?
What happens if the index passed
in is out of range? And you can
write tests for them straight away.
The worst type of testing is ‘write
all the code, and then try and test
it.’)

Listing 1 shows the constructor
and destructor for the compound
file class. It also shows a set of
underlying methods for perform-
ing some strict basic tasks: reading
a block from the compound file
with error checking, writing a
block, reading the entire FAT into
memory and writing it out again.
The latter two are a little special-
ized, but they show the standard
process of walking a FAT chain.
They are interesting for another
reason. To help with reading and
writing the FAT we need to store
the block numbers where the FAT
is to be found. When we write a FAT
back we have to write it in exactly
the same blocks it was found in
because the FAT contains its own
FAT chain.

(For other entities, it doesn’t
matter if the entity’s data is written

back to different blocks than it was
read from: the FAT takes care of it.
However, the FAT must be written
back exactly to the same place
since it carries within it the num-
bers of the blocks that make it up. If
we were cavalier in writing the FAT
back, we could end up with a FAT
that cannot find its own blocks. A
disaster.)

Hence I’ve added a list of FAT
blocks to the compound file class.
This list is only used at runtime to
track the blocks that make up the
FAT, it is not written to disk inside
the compound file. As it happens,
this list is invaluable when the
compound file has to grow the FAT
by adding another block: we can
easily maintain the FAT chain for
the FAT itself.

When we create a new com-
pound file, we have to set up and
write the three standard blocks of
the file: the header, the first node of
the FAT table, and the first block of
the root folder. The cfPrepare
method takes care of this work.
When we read an existing com-
pound file we need to check that
it’s one of ours (otherwise good-
ness knows where we’ll end up)
and we need to read the FAT. The
cfReadHeader method takes care of
this chore.

Don’t Slip Away
So far so good: we can create a new
compound file, and open and close
it. It’s time to consider how to add
something in it. This is where the
coding started to balloon in com-
plexity. I messed around for a
while, writing this bit of code and
that bit of code, before I hit on the
answer. In the interests of making
this seem as if it came to me fully
formed, I’ll skip the trial-and-error.

Before we add subfiles we
should worry about folders. After
all, a subfile has to be added to a
folder (which could be the root,
admittedly), so if we build the infra-
structure for folders we should
have an easier time for subfiles.

Recall that I decided to imple-
ment the functionality that we
should be able to ‘open’ a folder
and get a handle back so that we
didn’t have to implement a ‘current
directory’. At the high level, then,

we should have AddFolder and
OpenFolder methods. The Add-
Folder method would take in a
handle to the parent folder, a
name, then create a sub-folder in
the parent folder and return a
handle. OpenFolder would take a
handle to the parent and a name,
and then return a handle to the
open folder. Why the parent
handle? Well, this would be the
way we would navigate the folder
structure in the compound file. We
would have to have a special prop-
erty to get the root handle, but
from then on we could open a
subfolder off the root, a subfolder
off that, and so on.

The other folder methods
(CloseFolder, WalkFolder and Dele-
teFolder) would all take the handle
returned by AddFolder or Open-
Folder to do their stuff. (WalkFolder
is a method to walk a folder by the
way, calling a separate routine for
each directory entry.)

There are problems with this
scheme. Suppose I open the
‘Parent’ folder and then the ‘Child’
folder off that. I then close the
‘Parent’ folder. Without going into
details, I’ve just made it hard to
update the information for the
‘Child’ folder if I need to: I no longer
have a handle to the ‘Parent’. (You
can see why I was doing a lot of
experimenting...)

My solution was to create an
internal class for a folder.
Instances of this class would be
reference counted. In the above
example, opening ‘Parent’ would
get me a handle with count 1.
Opening ‘Child’ would get me a
handle with count 1, again, but the
code would be written so that it
also opened up the ‘Parent’ folder
again (incrementing its reference
count). I’d end up with a parent
handle with count 2, and a child
handle with count 1. That way I
could store a parent handle with
the child handle, and not have to
worry about the parent handle
being closed. I could also reuse
handles. Of course I would need a
list of the open folders: the
FOpenFolders field of the class.

Listing 2 shows this internal
class, TCFFolder. At its most basic,
it encapsulates an array of

58 The Delphi Magazine Issue 69

directory entries. These entries
are stored in a TList for conve-
nience. There are methods to get a
directory entry, given a name, to

add a new directory entry (this
method ensures that no duplicate
entries could occur), and to view
the directory entries as an array.

The TCFFolder class also main-
tains a little bit of state. There’s the
reference count to begin with,

using two methods, IncRefCount
and DecRefCount, to maintain it.
Notice that DecRefCount will auto-
matically free the object if the
reference count reaches zero. The
other bit of state is a Modified
property: whenever something

type
TCFFolder = class
private
FCount : integer;
FList : TList;
FModified : boolean;
FName : string;
FParent : TaaHandle;
FRefCount : integer;

protected
function cffGetCount : integer;
function cffGetDirEntry(aInx : integer) :
PaaCFDirEntry;

procedure cffClear;
public
constructor Create(aParent : TaaHandle; const aName :
string);

destructor Destroy; override;
function AddDirEntry(const aName : string;
aType : TaaCFDirEntryType) : PaaCFDirEntry;

procedure RemoveDirEntry(aDE : PaaCFDirEntry);
function GetDirEntry(const aName : string;
aType : TaaCFDirEntryType) : PaaCFDirEntry;

procedure LoadFromStream(aStrm : TStream);
procedure SaveToStream(aStrm : TStream);
procedure MarkModified;
function DecRefCount : boolean;
procedure IncRefCount;
property Count : integer read cffGetCount;
property DirEntry[aInx : integer] : PaaCFDirEntry
read cffGetDirEntry;

property Modified : boolean read FModified;
property Name : string read FName;
property Parent : TaaHandle read FParent;

end;
constructor TCFFolder.Create(aParent : TaaHandle;
const aName : string);

begin
inherited Create;
FParent := aParent;
FName := aName;
FList := TList.Create;
FRefCount := 1;

end;
destructor TCFFolder.Destroy;
begin
if (FList <> nil) then begin
cffClear;
FList.Free;

end;
inherited Destroy;

end;
function TCFFolder.AddDirEntry(const aName : string;
aType : TaaCFDirEntryType) : PaaCFDirEntry;

begin
Result := AllocMem(sizeof(TaaCFDirEntry));
Result.deName := aName;
Result.deType := aType;
FList.Add(Result);
MarkModified;

end;
procedure TCFFolder.cffClear;
var
i : integer;
Entry : PaaCFDirEntry;

begin
for i := 0 to pred(FList.Count) do begin
Entry := FList.List^[i];
Entry.deName := '';
Dispose(Entry);

end;
FList.Clear;
FCount := 0;

end;
function TCFFolder.cffGetCount : integer;
begin
Result := FList.Count;

end;
function TCFFolder.cffGetDirEntry(aInx : integer) :
PaaCFDirEntry;

begin
Assert((0 <= aInx) and (aInx < Count),
'TCFFolder.fGetDirEntry: index out of bounds');

Result := PaaCFDirEntry(FList.List^[aInx]);
end;
function TCFFolder.DecRefCount : boolean;
begin

dec(FRefCount);
if (FRefCount > 0) then
Result := false

else begin
Result := true;
Free;

end;
end;
function TCFFolder.GetDirEntry(const aName : string;
aType : TaaCFDirEntryType) : PaaCFDirEntry;

var
i : integer;

begin
for i := 0 to pred(FList.Count) do begin
Result := PaaCFDirEntry(FList.List^[i]);
if (Result^.deType = aType) and
(Result^.deName = aName) then
Exit;

end;
Result := nil;

end;
procedure TCFFolder.IncRefCount;
begin
inc(FRefCount);

end;
procedure TCFFolder.LoadFromStream(aStrm : TStream);
var
i : integer;
Entry : PaaCFDirEntry;
NameLen : byte;
CountInStrm : longint;

begin
aStrm.Seek(0, soFromBeginning);
cffClear;
aStrm.ReadBuffer(CountInStrm, sizeof(longint));
for i := 0 to pred(CountInStrm) do begin
New(Entry);
with Entry^ do begin
aStrm.ReadBuffer(NameLen, sizeof(NameLen));
SetLength(deName, NameLen);
aStrm.ReadBuffer(deName[1], NameLen);
aStrm.ReadBuffer(deType, sizeof(deType));
aStrm.ReadBuffer(de1stBlock, sizeof(de1stBlock));
aStrm.ReadBuffer(deSize, sizeof(deSize));
aStrm.ReadBuffer(deTime, sizeof(deTime));
aStrm.ReadBuffer(deAttr, sizeof(deAttr));

end;
FList.Add(Entry);

end;
end;
procedure TCFFolder.MarkModified;
begin
FModified := true;

end;
procedure TCFFolder.RemoveDirEntry(aDE : PaaCFDirEntry);
begin
Dispose(aDE);
FList.Remove(aDE);
MarkModified;

end;
procedure TCFFolder.SaveToStream(aStrm : TStream);
var
i : integer;
Entry : PaaCFDirEntry;
NameLen : byte;
CountInStrm : longint;

begin
aStrm.Seek(0, soFromBeginning);
CountInStrm := Count;
aStrm.WriteBuffer(CountInStrm, sizeof(longint));
for i := 0 to pred(Count) do begin
Entry := PaaCFDirEntry(FList.List^[i]);
with Entry^ do begin
NameLen := length(deName);
aStrm.WriteBuffer(NameLen, sizeof(NameLen));
aStrm.WriteBuffer(deName[1], NameLen);
aStrm.WriteBuffer(deType, sizeof(deType));
aStrm.WriteBuffer(de1stBlock, sizeof(de1stBlock));
aStrm.WriteBuffer(deSize, sizeof(deSize));
aStrm.WriteBuffer(deTime, sizeof(deTime));
aStrm.WriteBuffer(deAttr, sizeof(deAttr));

end;
end;

end;

➤ Listing 2: The internal
TCFFolder class.

May 2001 The Delphi Magazine 59

changes in the folder (a subfile’s
directory entry gets added,
updated, or deleted), this flag will
be set. This way we can easily see
whether the folder information has
changed and that it needs to be
updated inside the compound file.

A further layer, supplied by the
LoadFromStream and SaveToStream
methods, gives us a way to make
the folder persistent. We’ll see how
the compound file calls these
methods in a moment.

Now back to the compound file.
We need to see how this folder
class is used. Listing 3 shows the
code for the cfGetRootmethod (the
accessor method for the Root prop-
erty) as well as a special internal
method for reading the entire data
for a file or folder into a stream.
Let’s look at the method to read the
root first. Since the root folder is
going to be used practically all the
time, it makes sense to only read it
once. We see here that, should the
root folder have something in it, a
temporary memory stream is cre-
ated and the entire root folder data
is read into it. The root folder
object then initializes itself from
this stream. The method returns
the folder instance as a bare
pointer: this is the root folder
handle. As for the real meat: the
cfReadData method reads the data
for a file or folder based on the

start index for the entity and its
length. For sanity’s sake, I pep-
pered Assert statements through-
out this method: after all there are
two ways of measuring the length
of the data, the number of blocks
reported by the FAT and the actual
length reported by the directory
entry.

We can now look at the AddFolder
method (so that we can get some-
thing into the root folder!). Listing
4 shows this method. First, we
verify that the parent handle
exists. Next we check to see if the
parent handle has a directory
entry for this particular name. If
not we can go ahead and create a
new instance of TCFFolder. We now
have a lot of housekeeping to do:
we need to add a directory entry to
the parent folder, increment the
reference count for the parent

(we’ve just made a copy of its
handle, after all), mark the parent
handle as having been modified,
add the new folder to the open
folders list. At that point, we can
return the new handle (again, a
bare pointer to the TCFFolder
instance).

Not too bad, eh? The OpenFolder
method is not too different from
the cfGetRoot method, except that
it too, has to check for its parent
being valid. Also, looking at Listing
5, you can see that we make an
effort to find the folder in the list of
open folders first. If we do find it
there, we just increment the refer-
ence counts of both the folder and
its parent, and reuse the folder
handle. If not, we open the folder in

function TaaCompoundFile.cfGetRoot : TaaHandle;
var
Strm : TMemoryStream;
WorkRoot : TCFFolder;

begin
if (FRoot = nil) then begin
WorkRoot := TCFFolder.Create(nil, '');
try
if (PCFHeader(FHeader)^.cfhRootSize <> 0) then begin
Strm := TMemoryStream.Create;
try
cfReadData(2, Strm, PCFHeader(
FHeader)^.cfhRootSize);

WorkRoot.LoadFromStream(Strm);
finally
Strm.Free;

end;
end;

except
WorkRoot.Free;
raise;

end;
FRoot := WorkRoot;

end;
Result := FRoot;

end;
procedure TaaCompoundFile.cfReadData(aStartInx : integer;
aStream : TStream; aLen : integer);

var
Inx : integer;
DataBlock : TCFBlock;

BytesToCopy : integer;
begin
Assert(aLen <> 0,
'TaaCompoundFile.cfReadData: length of data is zero');

{position the stream at the start}
aStream.Seek(0, soFromBeginning);
{start at the first block}
Inx := aStartInx;
while (Inx <> EndOfChain) do begin
Assert(aLen <> 0,
'TaaCompoundFile.cfReadData: more data present ‘+
’than length indicates');

{read the current block}
cfReadBlock(Inx, DataBlock);
{write it to the stream}
if (aLen < CFBlockSize) then
BytesToCopy := aLen

else
BytesToCopy := CFBlockSize;

aStream.WriteBuffer(DataBlock, BytesToCopy);
dec(aLen, BytesToCopy);
{advance along to the next block}
Inx := FFAT[Inx];
Assert(Inx <> UnusedBlock,
'TaaCompoundFile.cfReadDir: unused block ‘+
’in FAT chain');

end;
Assert(aLen = 0, 'TaaCompoundFile.cfReadData: less data ‘+
‘present than length indicates');

end;

➤ Listing 3: Reading the root
folder. function TaaCompoundFile.AddFolder(aParent : TaaHandle; const aName : string) :

TaaHandle;
var
DE : PaaCFDirEntry;
Folder : TCFFolder;

begin
{check that the parent is a valid folder}
if not cfIsValidFolder(aParent) then
raise Exception.Create(
'TaaCompoundFile.AddFolder: parent is not valid handle');

{get directory entry of folder; if we succeed folder already exists-- error}
DE := TCFFolder(aParent).GetDirEntry(aName, detFolder);
if (DE <> nil) then
raise Exception.Create(
'TaaCompoundFile.AddFolder: name already exists as valid folder');

{create the folder}
Folder := TCFFolder.Create(aParent, aName);
Folder.MarkModified;
{add the folder name to the parent's directory list}
TCFFolder(aParent).AddDirEntry(aName, detFolder);
TCFFolder(aParent).IncRefCount;
{add the folder to the open folders list, return the folder}
FOpenFolders.Add(Folder);
Result := TaaHandle(Folder);

end;

➤ Listing 4: Adding a new
folder.

60 The Delphi Magazine Issue 69

function TaaCompoundFile.OpenFolder(aParent : TaaHandle;
const aName : string) : TaaHandle;

var
DE : PaaCFDirEntry;
Strm : TMemoryStream;
Folder : TCFFolder;
Handle : TaaHandle;

begin
{check that the parent is a valid folder}
if not cfIsValidFolder(aParent) then
raise Exception.Create('TaaCompoundFile.OpenFolder: ‘+
’parent is not valid handle');

{get the directory entry of the folder; if this fails, the
folder name doesn't exist in the parent}

DE := TCFFolder(aParent).GetDirEntry(aName, detFolder);
if (DE = nil) then
raise Exception.Create('TaaCompoundFile.OpenFolder: ‘+
‘name is not valid folder');

{check to see if the folder hasn't already been opened; in
which case just increment the reference counts, return
the open handle and exit}

if cfIsOpenFolder(aParent, aName, Handle) then begin
TCFFolder(aParent).IncRefCount;
TCFFolder(Handle).IncRefCount;
Result := Handle;
Exit;

end;
{create and read the folder}
Folder := TCFFolder.Create(aParent, aName);
try
if (DE^.deSize <> 0) then begin
Strm := TMemoryStream.Create;
try
cfReadData(DE^.de1stBlock, Strm, DE^.deSize);
Folder.LoadFromStream(Strm);

finally
Strm.Free;

end;
end;

except
Folder.Free;
raise;

end;
{increment the reference count for the parent}
TCFFolder(aParent).IncRefCount;
{add folder to the open folders list, return the folder}
FOpenFolders.Add(Folder);
Result := TaaHandle(Folder);

end;
procedure TaaCompoundFile.CloseFolder(aHandle : TaaHandle);
var
i : integer;
Folder : TCFFolder;
Parent : TCFFolder;

begin
{if the handle is not nil, nor the root...}
if (aHandle <> nil) and (aHandle <> FRoot) then
{find the folder in the open folders list...}
for i := 0 to pred(FOpenFolders.Count) do begin
Folder := TCFFolder(FOpenFolders.List^[i]);
{if the current item is the passed handle...}
if (aHandle = Folder) then begin
{get the parent}
Parent := TCFFolder(Folder.Parent);
{decrement the reference count for the open folder}
cfSaveFolder(Folder);
if Folder.DecRefCount then
FOpenFolders.Delete(i);

{decrement the reference count for the parent}
if (Parent <> FRoot) then begin
cfSaveFolder(Parent);
if Parent.DecRefCount then
FOpenFolders.Remove(Parent);

end;
Exit;

end;
end;

end;
procedure TaaCompoundFile.cfSaveFolder(aHandle : TaaHandle);
var
Parent : TCFFolder;
Folder : TCFFolder;
DE : PaaCFDirEntry;
Strm : TMemoryStream;

begin
{get the folder from the handle}
Folder := TCFFolder(aHandle);
{if the folder was modified...}
if Folder.Modified then begin
{get the parent handle}
Parent := TCFFolder(Folder.Parent);
{get the directory entry in the parent for this folder}
DE := Parent.GetDirEntry(Folder.Name, detFolder);
Assert(DE <> nil,
'TaaCompoundFile.cfSaveFolder: parent dir entry ‘+
’not found');

{if the folder is empty...}
if (Folder.Count = 0) then begin
{make sure it uses no blocks}
if (DE^.de1stBlock <> 0) then begin
cfReleaseChain(DE^.de1stBlock, true);
DE^.de1stBlock := 0;

end;
{update the parent}
DE^.deSize := 0;
DE^.deTime := Now;
Parent.MarkModified;

end
{otherwise the folder has directory entries}
else begin
{if this folder has never been written, get the first
block}

if (DE^.de1stBlock = 0) then
DE^.de1stBlock := cfGetEmptyBlock;

{copy the folder data to a stream, and from thence to
the compound file}

Strm := TMemoryStream.Create;
try
{save the folder to the stream}
Folder.SaveToStream(Strm);
{save the stream to the compound file}
cfWriteData(DE^.de1stBlock, Strm);
{update the parent}
DE^.deSize := Strm.Size;
DE^.deTime := Now;
Parent.MarkModified;

finally
Strm.Free;

end;
end;

end;
end;
procedure TaaCompoundFile.cfSaveRootFolder;
var
Folder : TCFFolder;
Strm : TMemoryStream;

begin
{get the root folder}
Folder := TCFFolder(FRoot);
{if the folder was modified...}
if (Folder <> nil) and Folder.Modified then begin
{copy the folder data to a stream, and from thence to
the compound file}

Strm := TMemoryStream.Create;
try
{save the folder to the stream}
Folder.SaveToStream(Strm);
{save the stream to the compound file}
cfWriteData(2, Strm);
{update the header}
PCFHeader(FHeader).cfhRootSize := Strm.Size;

finally
Strm.Free;

end;
end;

end;
procedure TaaCompoundFile.cfWriteData(aStartInx : integer;
aStream : TStream);

var
Inx : integer;
NewInx : integer;
DataBlock : TCFBlock;
BytesToGo : integer;
BytesTOCopy : integer;

begin
{position the stream at the start}
aStream.Seek(0, soFromBeginning);
{start at the first block}
Inx := aStartInx;
{release all subsequent blocks}
cfReleaseChain(aStartInx, false);
{calculate the number of bytes to write to the first block
(we don't have to allocate this one: it's already done)}
BytesToGo := aStream.Size;
if (BytesToGo > CFBlockSize) then
BytesToCopy := CFBlockSize

else begin
FillChar(DataBlock, sizeof(DataBlock), $CC);
BytesToCopy := BytesToGo;

end;
dec(BytesToGo, BytesToCopy);
{copy the data over for the first block}
aStream.ReadBuffer(DataBlock, BytesToCopy);
cfWriteBlock(Inx, DataBlock);
{while there is still more data to write...}
while (BytesToGo <> 0) do begin
{calculate the number of bytes to write to the next block}
if (BytesToGo > CFBlockSize) then
BytesToCopy := CFBlockSize

else begin
FillChar(DataBlock, sizeof(DataBlock), $CC);
BytesToCopy := BytesToGo;

end;
dec(BytesToGo, BytesToCopy);
{allocate another block from the compound file}
NewInx := cfGetEmptyBlock;
FFAT[Inx] := NewInx;
Inx := NewInx;
{copy the data over}
aStream.ReadBuffer(DataBlock, BytesToCopy);
cfWriteBlock(Inx, DataBlock);

end;
end;

May 2001 The Delphi Magazine 61

the same manner as we did the
root.

Closing a folder leads us to
another quirk. So far we have not
written the folder information back
to the compound file. All changes
are held in memory. Well, when we
close a folder handle, it behooves
us to update it inside the com-
pound file. Listing 5 also shows us
this close operation. We find the
handle in the list of open folders.
Once we have it, we make a note of
its parent, save the folder and then
decrement the folder’s reference
count. Why make a note of its
parent prior to the decrement?
Well, internally this method call
might free the folder object, and if
we were to then read its Parent
property we’d hit an access viola-
tion. Anyway, if the reference
count is reduced to zero and the
object freed, the method will
return true and we then remove
the item (which no longer exists)
from the list of open folders. At this
point we can do exactly the same
to the parent handle.

So that leaves the real work to
the cfSaveFolder method. It is this
method that is responsible for
making sure that the folder gets
written to the compound file
before its memory might be freed.
First thing it does, of course, is to
make sure that the folder was
altered, for if it weren’t there would
be nothing to save. Now the fun
stuff starts. The method finds the
directory entry for the folder in its
parent folder (if this is not found,
an assertion fails: it should be
there). If the folder being updated
is empty, we must release any
blocks occupied by it back to the
FAT. This is a simple matter: we
merely mark the blocks it uses as
unused, which is an operation
done entirely in the FAT. We then
update the directory entry and
mark the parent as being modified
(the directory entry we modified
belongs to the parent, remember).
If, on the other hand, the folder did
have some entries, we create a
temporary memory stream, save

the folder to it and then copy the
stream data to the compound file
using the cfWriteData method.
Again, we then alter the directory
entry for the folder and mark the
parent as modified. Notice that we
may have to allocate the initial
block for the folder, but not the
others: that’s the job of the
cfWriteData method.

cfWriteData is a fairly simple
workhorse routine. First it releases
all the blocks occupied by the
folder data, except the first (we’ll
reuse that one). The reason for this
is code simplicity. If we didn’t, we’d
have to cater for the cases that the
folder data occupied more or less
blocks than before, which I would
guess to be some fairly convoluted
code. By releasing all the blocks, it
makes the writing of the data sim-
pler: apart from the first block, we
shall always have to allocate new
blocks to hold the data. It is also
extremely likely that we’ll reuse
the blocks we just deallocated
anyway. cfWriteData goes into a
trivial enough loop of allocating a
new block, updating the FAT table,
and copying data from the stream
to the new block. The only compli-
cation is the minor housekeeping
code to keep track of how much
data there is left to copy.

The analogous method for
saving the root folder is very simi-
lar, but much slimmed down.
Listing 5 has this method as well.

Alright
At this point, we have pretty well
sewn up all the folder activities
that the compound file can do. I’m
going to leave the deletion of a
folder as an Easy Exercise For The
Reader, the only complication
being that you don’t really want to
delete a folder that contains
subfiles or other folders, or that is
open with a reference count of
greater than one.

So, finally, we reach the topic of
the subfiles. Here, for the purposes
of the article, I cheated a little. I
decided to implement just three
subfile-related methods: ReadSub-
file will read the entire data com-
prising a subfile into a stream;
UpdateSubfilewill either update an
existing subfile’s data from a
stream or create a new subfile and
copy the data over; and Delete-
Subfile will delete a subfile.

Listing 6 shows the stream class
that exposes a subfile. Simple to
write and to use. The constructor
takes as parameters the com-
pound file instance, a folder
handle, the subfile name and a flag
to say whether to create the
subfile. Internally it creates a
TMemoryStream instance and, if the
subfile is an existing one, will read
all of the data using ReadSubfile.
The usual stream operations for

➤ Facing page, Listing 5:
Opening and closing a folder.

constructor TaaSubfileStream.Create(aCF : TaaCompoundFile; aFolder : TaaHandle;
const aName : string; aCreate : boolean);

begin
inherited Create;
FCF := aCF;
FFolder := aFolder;
FName := aName;
FStream := TMemoryStream.Create;
if aCreate then
aCF.DeleteSubfile(aFolder, aName)

else
aCF.ReadSubFile(aFolder, aName, FStream);

end;
destructor TaaSubfileStream.Destroy;
begin
if FModified then
FCF.UpdateSubfile(FFolder, FName, FStream);

FStream.Free;
inherited Destroy;

end;
function TaaSubfileStream.Read(var Buffer; Count : longint) : longint;
begin
Result := FStream.Read(Buffer, Count);

end;
function TaaSubfileStream.Write(const Buffer; Count : longint) : longint;
begin
Result := FStream.Write(Buffer, Count);
FModified := true;

end;
function TaaSubfileStream.Seek(Offset : longint; Origin : Word) : longint;
begin
Result := FStream.Seek(Offset, Origin);

end;

➤ Listing 6:
The subfile stream class.

62 The Delphi Magazine Issue 69

the subfile stream then act directly
on the internal memory stream.
When the subfile stream is closed,
the destructor will make sure the
subfile exists in the compound file
and then copy all of the data over
using UpdateSubfile.

Since the subfile stream class
was so easy, the hard work must
be done in the compound file

methods. In reality we’ve seen
much of the processing already:
it’s roughly the same code as we’ve
already discussed for the folders. I
therefore present it without
comment in Listing 7.

Comment Te Dire Adieu
In this article, we’ve come a long
way. Even so, the compound file
we’ve dissected is very basic.
There are numerous improve-
ments that can be made. Apart

procedure TaaCompoundFile.DeleteSubfile(aFolder : TaaHandle;
const aName : string);

var
DE : PaaCFDirEntry;
Folder : TCFFolder;

begin
{check that the folder is valid}
if not cfIsValidFolder(aFolder) then
raise Exception.Create(
'TaaCompoundFile.DeleteSubfile: parent is not ‘+
’valid handle');

{get the directory entry of the subfile}
Folder := TCFFolder(aFolder);
DE := Folder.GetDirEntry(aName, detSubfile);
{if the directory entry exists...}
if (DE <> nil) then begin
{free all the blocks occupied by the subfile}
if (DE^.de1stBlock <> 0) then
cfReleaseChain(DE^.de1stBlock, true);

{remove the directory entry}
Folder.RemoveDirEntry(DE);

end;
end;
procedure TaaCompoundFile.ReadSubfile(aFolder : TaaHandle;
const aName : string; aStream : TStream);

var
DE : PaaCFDirEntry;

begin
{check that the folder is valid}
if not cfIsValidFolder(aFolder) then
raise Exception.Create(
'TaaCompoundFile.ReadSubfile: parent is not ‘+
’valid handle');

{get the directory entry of the subfile; if this fails,
the subfile name doesn't exist in the folder}
DE := TCFFolder(aFolder).GetDirEntry(aName, detSubfile);
if (DE = nil) then
raise Exception.Create(
'TaaCompoundFile.ReadSubfile: name is not ‘+
’valid subfile');

{if there's some data, copy it to the stream}
aStream.Seek(0, soFromBeginning);
if (DE^.deSize <> 0) then
cfReadData(DE^.de1stBlock, aStream, DE^.deSize);

aStream.Size := DE^.deSize;
end;
procedure TaaCompoundFile.UpdateSubfile(aFolder : TaaHandle;
const aName : string; aStream : TStream);

var
DE : PaaCFDirEntry;
StrmSize : integer;
Folder : TCFFolder;

begin
{check that the folder is valid}
if not cfIsValidFolder(aFolder) then
raise Exception.Create(
'TaaCompoundFile.UpdateSubfile: parent is not ‘+
’valid handle');

{get the directory entry of the subfile}
Folder := TCFFolder(aFolder);
DE := Folder.GetDirEntry(aName, detSubfile);
{if the directory entry doesn't exist, create a new one}
if (DE = nil) then
DE := Folder.AddDirEntry(aName, detSubfile);

{if the stream is empty, make sure the existing blocks are
freed}

StrmSize := aStream.Size;
if (StrmSize = 0) then begin
if (DE^.de1stBlock <> 0) then begin
cfReleaseChain(DE^.de1stBlock, true);
DE^.de1stBlock := 0;

end;
end
{otherwise there's some data to write}
else begin
{if this subfile has never been written, get the first
block}

if (DE^.de1stBlock = 0) then
DE^.de1stBlock := cfGetEmptyBlock;

{save the stream to the compound file}
cfWriteData(DE^.de1stBlock, aStream);

end;
{update the folder}
DE^.deSize := StrmSize;
DE^.deTime := Now;
Folder.MarkModified;

end;

➤ Listing 7: Operations on
subfiles. from the examples I’ve already

given, some improvements could
be made in the area of subfile pro-
cessing. In trying to keep things
simple, I made the subfile code
copy the data in and out of the
compound file by use of middle-
man memory streams. A better bet
would be to directly access the
data in the compound file with the
subfile stream. Another efficiency
improvement would be the search
for unused blocks: at the moment
it’s a sequential search from the
beginning (it executes in linear
time), but can you devise another
method that will work in constant
time? Anyway, I hope you’ve
enjoyed this foray into applied
algorithms.

Julian Bucknall is looking forward
to summer in this little ville. By
the time you read this, Turbo-
Power will have moved into new
offices, and he’ll have just about
unpacked. He can be reached at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.
© Julian M Bucknall, 2001

	Too Much Of A Good Thing
	Something To Live For
	Smalltown Boy
	Don’t Know What To Do
	Don’t Slip Away
	Alright
	Comment Te Dire Adieu

